Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ERJ Open Res ; 8(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35769420

RESUMO

Variation around the COL18A1 gene, which encodes the angiostatic peptide endostatin, may influence disease heterogeneity in pulmonary arterial hypertension https://bit.ly/3shXrNR.

2.
Pulm Circ ; 12(1): e12007, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506100

RESUMO

Hepatoma-derived growth factor (HDGF) was previously shown to be associated with increased mortality in a small study of idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH). In this study, we measured serum HDGF levels in a large multicenter cohort (total 2017 adult PAH-Biobank enrollees), we analyzed the associations between HDGF levels and various clinical measures using linear or logistic regression models. Higher HDGF levels were found to be significantly associated with worse pulmonary hemodynamics, prostacyclin treatment; among PAH subtypes, higher HDGF levels were most associated with portopulmonary hypertension (beta = 0.469, p < 0.0001). Both Kaplan-Meier curve and Cox proportional hazard regression demonstrated that higher HDGF levels are associated with a higher risk of mortality (COX hazard ratio 1.31, p < 0.0001). Further, in the Sugen hypoxia (SuHx) rat model, the highest HDGF levels were post-pulmonary circulation, and HDGF levels significantly increased with the development of PAH. In pulmonary arteries, immunohistochemistry staining showed that HDGF was highly expressed in pulmonary smooth muscle cells in both PAH patients and SuHx rats. In conclusion, we found that higher serum HDGF was linked with increased mortality, and associated with disease severity in a large multi-center adult PAH cohort (n = 2017). In the SuHX PAH models, circulating HDGF levels are pulmonary in origin and increase with PAH progression. HDGF may be actively involved in vascular remodeling in PAH.

4.
ERJ Open Res ; 7(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34651041

RESUMO

Currently available noninvasive markers for assessing disease severity and mortality risk in pulmonary arterial hypertension (PAH) are unrelated to fundamental disease biology. Endostatin, an angiostatic peptide known to inhibit pulmonary artery endothelial cell migration, proliferation and survival in vitro, has been linked to adverse haemodynamics and shortened survival in small PAH cohorts. This observational cohort study sought to assess: 1) the prognostic performance of circulating endostatin levels in a large, multicentre PAH cohort; and 2) the added value gained by incorporating endostatin into existing PAH risk prediction models. Endostatin ELISAs were performed on enrolment samples collected from 2017 PAH subjects with detailed clinical data, including survival times. Endostatin associations with clinical variables, including survival, were examined using multivariable regression and Cox proportional hazards models. Extended survival models including endostatin were compared to null models based on the REVEAL risk prediction tool and European Society of Cardiology/European Respiratory Society (ESC/ERS) low-risk criteria using likelihood ratio tests, Akaike and Bayesian information criteria and C-statistics. Higher endostatin was associated with higher right atrial pressure, mean pulmonary arterial pressure and pulmonary vascular resistance, and with shorter 6-min walk distance (p<0.01). Mortality risk doubled for each log higher endostatin (hazard ratio 2.3, 95% CI 1.6-3.4, p<0.001). Endostatin remained an independent predictor of survival when incorporated into existing risk prediction models. Adding endostatin to REVEAL-based and ESC/ERS criteria-based risk assessment strategies improved mortality risk prediction. Endostatin is a robust, independent predictor of mortality in PAH. Adding endostatin to existing PAH risk prediction strategies improves PAH risk assessment.

6.
Genome Med ; 13(1): 80, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971972

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. METHODS: To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. RESULTS: Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. CONCLUSIONS: Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.


Assuntos
Biomarcadores , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Variação Genética , Linfocinas/genética , Fator de Crescimento Derivado de Plaquetas/genética , Hipertensão Arterial Pulmonar/epidemiologia , Hipertensão Arterial Pulmonar/etiologia , Adolescente , Adulto , Idade de Início , Idoso , Alelos , Substituição de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Criança , Pré-Escolar , Proteínas da Matriz Extracelular/química , Feminino , Genótipo , Humanos , Linfocinas/química , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Fator de Crescimento Derivado de Plaquetas/química , Vigilância da População , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-33320693

RESUMO

Background - Approximately 25% of patients with pulmonary arterial hypertension (PAH) have been found to harbor rare mutations in disease-causing genes. To identify missing heritability in PAH we integrated deep phenotyping with whole-genome sequencing data using Bayesian statistics. Methods - We analyzed 13,037 participants enrolled in the NIHR BioResource - Rare Diseases (NBR) study, of which 1,148 were recruited to the PAH domain. To test for genetic associations between genes and selected phenotypes of pulmonary hypertension (PH), we used the Bayesian rare-variant association method BeviMed. Results - Heterozygous, high impact, likely loss-of-function variants in the Kinase Insert Domain Receptor (KDR) gene were strongly associated with significantly reduced transfer coefficient for carbon monoxide (KCO, posterior probability (PP)=0.989) and older age at diagnosis (PP=0.912). We also provide evidence for familial segregation of a rare nonsense KDR variant with these phenotypes. On computed tomographic imaging of the lungs, a range of parenchymal abnormalities were observed in the five patients harboring these predicted deleterious variants in KDR. Four additional PAH cases with rare likely loss-of-function variants in KDR were independently identified in the US PAH Biobank cohort with similar phenotypic characteristics. Conclusions - The Bayesian inference approach allowed us to independently validate KDR, which encodes for the Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), as a novel PAH candidate gene. Furthermore, this approach specifically associated high impact likely loss-of-function variants in the genetically constrained gene with distinct phenotypes. These findings provide evidence for KDR being a clinically actionable PAH gene and further support the central role of the vascular endothelium in the pathobiology of PAH.

8.
Circulation ; 141(24): 1986-2000, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32192357

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy. Hereditary cases are associated with germline mutations in BMPR2 and 16 other genes; however, these mutations occur in <25% of patients with idiopathic PAH and are rare in PAH associated with connective tissue diseases. Preclinical studies suggest epigenetic dysregulation, including altered DNA methylation, promotes PAH. Somatic mutations of Tet-methylcytosine-dioxygenase-2 (TET2), a key enzyme in DNA demethylation, occur in cardiovascular disease and are associated with clonal hematopoiesis, inflammation, and adverse vascular remodeling. The role of TET2 in PAH is unknown. METHODS: To test for a role of TET2, we used a cohort of 2572 cases from the PAH Biobank. Within this cohort, gene-specific rare variant association tests were performed using 1832 unrelated European patients with PAH and 7509 non-Finnish European subjects from the Genome Aggregation Database (gnomAD) as control subjects. In an independent cohort of 140 patients, we quantified TET2 expression in peripheral blood mononuclear cells. To assess causality, we investigated hemodynamic and histological evidence of PAH in hematopoietic Tet2-knockout mice. RESULTS: We observed an increased burden of rare, predicted deleterious germline variants in TET2 in PAH patients of European ancestry (9/1832) compared with control subjects (6/7509; relative risk=6; P=0.00067). Assessing the whole cohort, 0.39% of patients (10/2572) had 12 TET2 mutations (75% predicted germline and 25% somatic). These patients had no mutations in other PAH-related genes. Patients with TET2 mutations were older (71±7 years versus 48±19 years; P<0.0001), were more unresponsive to vasodilator challenge (0/7 versus 140/1055 [13.2%]), had lower pulmonary vascular resistance (5.2±3.1 versus 10.5±7.0 Wood units; P=0.02), and had increased inflammation (including elevation of interleukin-1ß). Circulating TET2 expression did not correlate with age and was decreased in >86% of PAH patients. Tet2-knockout mice spontaneously developed PAH, adverse pulmonary vascular remodeling, and inflammation, with elevated levels of cytokines, including interleukin-1ß. Long-term therapy with an antibody targeting interleukin-1ß blockade resulted in regression of PAH. CONCLUSIONS: PAH is the first human disease related to potential TET2 germline mutations. Inherited and acquired abnormalities of TET2 occur in 0.39% of PAH cases. Decreased TET2 expression is ubiquitous and has potential as a PAH biomarker.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Epigênese Genética/fisiologia , Mutação/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Estudos de Coortes , Dioxigenases , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade
9.
Eur Respir J ; 55(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32029443

RESUMO

The pro-inflammatory cytokine interleukin (IL)-6 has been associated with outcomes in small pulmonary arterial hypertension (PAH) cohorts composed largely of patients with severe idiopathic PAH (IPAH). It is unclear whether IL-6 is a marker of critical illness or a mechanistic biomarker of pulmonary vascular remodelling. We hypothesised that IL-6 is produced by pulmonary vascular cells and sought to explore IL-6 associations with phenotypes and outcomes across diverse subtypes in a large PAH cohort.IL-6 protein and gene expression levels were measured in cultured pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) from PAH patients and healthy controls. Serum IL-6 was measured in 2017 well-characterised PAH subjects representing each PAH subgroup. Relationships between IL-6 levels, clinical variables, and mortality were analysed using regression models.Significantly higher IL-6 protein and gene expression levels were produced by PASMCs than by PAECs in PAH (p<0.001), while there was no difference in IL-6 between cell types in controls. Serum IL-6 was highest in PAH related to portal hypertension and connective tissue diseases (CTD-PAH). In multivariable modelling, serum IL-6 was associated with survival in the overall cohort (hazard ratio 1.22, 95% CI 1.08-1.38; p<0.01) and in IPAH, but not in CTD-PAH. IL-6 remained associated with survival in low-risk subgroups of subjects with mild disease.IL-6 is released from PASMCs, and circulating IL-6 is associated with specific clinical phenotypes and outcomes in various PAH subgroups, including subjects with less severe disease. IL-6 is a mechanistic biomarker, and thus a potential therapeutic target, in certain PAH subgroups.


Assuntos
Interleucina-6/genética , Hipertensão Arterial Pulmonar/genética , Células Endoteliais , Humanos , Miócitos de Músculo Liso , Fenótipo , Artéria Pulmonar
10.
Am J Respir Crit Care Med ; 201(11): 1407-1415, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916850

RESUMO

Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH).Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH.Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis.Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P = 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P = 0.034).Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.


Assuntos
Negro ou Afro-Americano/genética , Hispânico ou Latino/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/mortalidade , População Branca/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Estados Unidos/epidemiologia
11.
Genome Med ; 11(1): 69, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727138

RESUMO

BACKGROUND: Group 1 pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite recent therapeutic advances. Pathogenic remodeling of pulmonary arterioles leads to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. Mutations in bone morphogenetic protein receptor type 2 and other risk genes predispose to disease, but the vast majority of non-familial cases remain genetically undefined. METHODS: To identify new risk genes, we performed exome sequencing in a large cohort from the National Biological Sample and Data Repository for PAH (PAH Biobank, n = 2572). We then carried out rare deleterious variant identification followed by case-control gene-based association analyses. To control for population structure, only unrelated European cases (n = 1832) and controls (n = 12,771) were used in association tests. Empirical p values were determined by permutation analyses, and the threshold for significance defined by Bonferroni's correction for multiple testing. RESULTS: Tissue kallikrein 1 (KLK1) and gamma glutamyl carboxylase (GGCX) were identified as new candidate risk genes for idiopathic PAH (IPAH) with genome-wide significance. We note that variant carriers had later mean age of onset and relatively moderate disease phenotypes compared to bone morphogenetic receptor type 2 variant carriers. We also confirmed the genome-wide association of recently reported growth differentiation factor (GDF2) with IPAH and further implicate T-box 4 (TBX4) with child-onset PAH. CONCLUSIONS: We report robust association of novel genes KLK1 and GGCX with IPAH, accounting for ~ 0.4% and 0.9% of PAH Biobank cases, respectively. Both genes play important roles in vascular hemodynamics and inflammation but have not been implicated in PAH previously. These data suggest new genes, pathogenic mechanisms, and therapeutic targets for this lethal vasculopathy.


Assuntos
Exoma , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipertensão Arterial Pulmonar/genética , Adulto , Idade de Início , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Variação Genética , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/fisiopatologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...